
TESTING AND DEBUGGING

Fundamentals of Computer Science I

zombie[0]

zombie[2]
zombie[5]

zombie[1]
zombie[3]

zombie[4]

Buuuuugs…

Outline
• Debugging

• Types of Errors

• Syntax Errors

• Semantic Errors

• Logic Errors

• Preventing Bugs

• Have a plan before coding, use good style

• Learn to trace execution

• On paper, with print statements, using the debugger

• Explain it to a teddy bear

• Incremental development

Debugging
• Majority of program development time:

• Finding and fixing mistakes! a.k.a. bugs

• It's not just you: bugs happen to all programmers

3

Debugging
• Computers can help find bugs

• But: computer can't automatically find all bugs!

• Computers do exactly what you ask

• Not necessarily what you want

• There is always a logical explanation!

• Make sure you saved & compiled last change

4

“There has never been an unexpectedly short

debugging period in the history of computers.”
 -Steven Levy

“As soon as we started programming, we found out to our surprise that it

wasn't as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent in finding mistakes in my own

programs.”
 -Maurice Wilkes

Preventing Bugs

• Have a plan

• Write out steps in English before you code

• Write comments first particularly

before tricky bits

• Use good coding style

• Good variable names

• "Name variables as if your first born child"

• If variable is called area it should hold an area!

• Split complicated stuff into manageable steps

• ()’s are free, force order of operations you want

• Carefully consider loop bounds

• Listen to Idle (IDE) feedback

5

Finding Bugs
• How to find bugs

• Add debug print statements

• Print out state of variables, loop values, etc.

• Remove before submitting

• Use debugger in your IDE

• Talk through program line-by-line

• Explain it to a:

• Programming novice

• Rubber duckie

• Teddy bear

• Potted plant

• …

6

Debugging Example

• Problem:

– For integer N > 1, compute its prime factorization

• 98 = 2 x 72

• 17 = 17

• 154 = 2 x 7 x 11

• 16,562 = 2 x 72 x 132

• 3,757,208 = 23 x 7 132 x 397

• 11,111,111,111,111,111 = 2,071,723 x 5,363,222,357

– Possible application: Break RSA encryption

 Factor 200-digit numbers

 Used to secure Internet commerce

7

A Simple Algorithm

• Problem:

• For integer N > 1, compute its prime factorization

• Algorithm:

• Starting with i=2

• Repeatedly divide N by i as long as it evenly divides, output i every time

it divides

• Increment i

• Repeat

8

 Example Run

9

i N Output

2 16562 2

3 8281

4 8281

5 8281

6 8281

7 8281 7 7

8 169

9 169

10 169

11 169

12 169

13 169 13 13

14 1

… 1

Buggy Factorization Program

10

import sys

n = int(sys.argv[1])
for i in range (0, n)
 while n % i == 0:
 print(str(i), end=" ")
 n = n / i

This program has many bugs!

import sys

n = int(sys.argv[1])
for i in range (0, n)
 while n % i == 0:
 print(str(i), end=" ")
 n = n / i

Debugging: Syntax Errors

• Syntax errors

• Illegal Python program

• Usually easily found and fixed

11

Debugging: Semantic Errors

• Semantic error

• Legal but wrong Python program

• Run program to identify problem
12

import sys

n = int(sys.argv[1])
for i in range (0, n):
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i % python Factors1.py 98

Traceback (most recent call last):
 File "Factors1.py", line 5, in <module>
 while n % i == 0:
ZeroDivisionError: integer division or
modulo by zero

Need to start
at 2 since 0
and 1 cannot
be factors.

Debugging: Even More Problems

13

import sys

n = int(sys.argv[1])
for i in range (2, n):
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i

% python Factors2.py 5

No output???

Debugging: Adding Trace Print Statement

14

import sys

n = int(sys.argv[1])
for i in range (2, n):
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i
 print("TRACE " + str(i) + " " + str(n))

% python Factors3.py 5
TRACE 2 5
TRACE 3 5
TRACE 4 5

i in for-loop
should go up
to n

Success?

15

import sys

n = int(sys.argv[1])
for i in range (2, n+1):
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i

% python Factors4.py 5
5

% python Factors4.py 6
2 3

% python Factors4.py 98
2 7 7

% python Factors4.py 3757208
2 2 2 7 13 13 397

Fixes the "off-by-
one" error in the
loop bounds.

Correct, But Too Slow

16

import sys

n = int(sys.argv[1])
for i in range (2, n+1):
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i

% python Factors4.py 11111111
11 73 101 137

% python Factors4.py 11111111111
21649 51329

% python Factors4.py 11111111111111111
2071723 5363222357

Fixed Faster Version

17

import sys

n = int(sys.argv[1])
i = 2
while i^2 <= n:
 while n % i == 0:
 print(str(i), end = " ")
 n = n / i
 i += 1

% python Factors5.py 98
2 7 7

% python Factors5.py 11111111
11 73 101 137

% python Factors5.py 11111111111
21649 513239

% python Factors5.py 11111111111111
11 239 4649 909091

% python Factors5.py 11111111111111111
2071723 5363222357

Factors: Analysis
• How large an integer can I factor?

18

% python Factors.py 3757208
2 2 2 7 13 13 397

% python Factors.py 9201111169755555703
9201111169755555703

digits i <= n i*i <= n

3 instant instant

6 0.15 seconds instant

9 77 seconds instant

12 21 hours * 0.16 seconds

15 2.4 years * 2.7 seconds

18 2.4 millennia * 92 seconds

* estimated

Incremental Development

• Split development into stages:

• Test thoroughly after each stage

• Don't move on until it's working!

• Bugs are (more) isolated to the part you've just been working on

• Prevents confusion caused by simultaneous bugs in several parts

19

Summary

• Debugging

• Types of Errors

• Syntax Errors

• Semantic Errors

• Logic Errors

• Preventing Bugs

• Have a plan before coding, use good style

• Learn to trace execution

• On paper, with print statements, using the debugger

• Explain it to a teddy bear

• Incremental development

• Test, Test, Test!!

